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Abstract
We compute the generating function for the characters of the irreducible
representations of SU(n) whose associated Young diagrams have only two
rows with the same number of boxes. The result is given by formulae (11),
(14), (25)–(27) and is a rational determinantal expression in which both the
numerator and the denominator have a simple structure when expressed in
terms of Schur polynomials.

PACS numbers: 02.30.Gp, 02.20.Qs

1. Introduction

Among the integrable quantum mechanical systems known to date, those related to the
root systems of finite dimensional simple Lie algebras form a prominent class [8]. They
constitute, in particular, a natural framework to extend many classical systems of orthogonal
polynomials to the case of several independent variables. A much studied example is the
trigonometric Calogero–Sutherland model related to An−1 [1, 13], whose eigenfunctions
provide a natural generalization to n variables of the Gegenbauer polynomials. A number of
properties of these generalized Gegenbauer polynomials are known [9–12]. The polynomials
depend on a continuous parameter κ , which is related to the coupling constant in the
Hamiltonian, and are determined by n − 1 quantum numbers. Several special values for these
quantities are interesting, among which we mention two: first, when the κ parameter goes to
unity, the generalized Gegenbauer polynomials converge to the characters of the irreducible
representations of SU(n); second, when only the first quantum number is nonvanishing, the
polynomials become those of Jack [6].

In the task of deepening our understanding of the properties of the generalized Gegenbauer
polynomials, the computation of the generating function would be one important milestone.
This is known only for the simplest A1 and A2 cases [12]. Nevertheless, in some circumstances
one can extract useful information from the generating function of some particular subsets of
the whole system of orthogonal polynomials. The generating function of Jack polynomials,
for instance, has been recently used as the starting point of an inductive proof of the structure

0305-4470/02/240335+06$30.00 © 2002 IOP Publishing Ltd Printed in the UK L335

http://stacks.iop.org/ja/35/L335


L336 Letter to the Editor

of the derivatives of the generalized Gegenbauer polynomials [3]. This function is a simple
deformation of the generating function of the characters of the irreducible representations of
SU(n) obtained by taking κ = 1 in the Jack polynomials. This shows how the knowledge
of the generating function of some specific classes of irreducible characters of SU(n) can
be a valuable clue for studying the corresponding generating function for the generalized
Gegenbauer polynomials. In this spirit, the purpose of this letter is to compute the generating
function of a subset of irreducible characters of SU(n) which represents the immediate next
step in complexity starting from the characters related to Jack polynomials.

2. Computation of the generating function

As stated in the introduction, our goal is to compute

F(t, zj ) =
∞∑

k=0

Pk(zj )t
k (1)

where Pk(zj ) is the character of the irreducible representation of SU(n) whose associated
Young diagram has only two rows of length k, i.e.

Pk(zj ) = χk,k,0,...,0(zj ). (2)

We explain the notation. We use χk1,k2,...,kn
to designate the character of the irreducible

representation of SU(n) with the Young diagram containing ki boxes in the ith row; zj is the
j th elementary symmetric polynomial in the coordinates x1, x2, . . . , xn of the maximal torus
of SU(n):

zj =
∑

i1<i2<...<ij

xi1xi2 . . . xij . (3)

There exists a simple relation between the χ-symbols and the generalized Gegenbauer
polynomials for κ = 1, namely

χk1,k2,...,kn
= zkn

n P 1
k1−k2,k2−k3,...,kn−1−kn

. (4)

Finally, we give two convenient formulae for computing the characters. First, directly in terms
of the xj , we have the Weyl character formula [14]

χk1,k2,...,kn
(xj ) = 1

�
|xn+k1−1, xn+k2−2, . . . , xkn | (5)

in which the shorthand notation

|xλ1, xλ2, . . . , xλn | =

∣∣∣∣∣∣∣∣∣∣
x

λ1
1 x

λ2
1 · · · x

λn

1

x
λ1
2 x

λ2
2 · · · x

λn

2
...

...
. . .

...

xλ1
n xλ2

n · · · xλn
n

∣∣∣∣∣∣∣∣∣∣
(6)

is used, and the denominator is the Vandermonde determinant

� = |xn−1, xn−2, . . . , 1| =
∏
i<j

(xi − xj ). (7)

And second, as functions of zj , they can be expressed through the second Giambelli identity
[7]: if (l1, l2, . . . , lm) is the conjugate partition to (k1, k2, . . . , kn),

χk1,k2,...,kn
(zj ) =

∣∣∣∣∣∣∣∣∣
zl1 zl1+1 zl1+2 · · · zl1+m−1

zl2−1 zl2 zl2+1 · · · zl2+m−2

...
...

...
. . .

...

zlm−m+1 · · · · · · · · · zlm

∣∣∣∣∣∣∣∣∣ (8)
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where it is understood that z0 = 1 and zj = 0 if j > n or j < 0.
After these preliminaries, we turn back to (1). According to (5), we can write

F = 1

�

∞∑
k=0

∑
σ∈Sn

sgn(σ )xn−1+k
σ (1) xn−2+k

σ (2) xn−3
σ (3) · · · x1

σ (n−1)x
0
σ (n)

 tk. (9)

If we interchange the summations, we get an alternating sum of simple geometric progressions,
thus

F = 1

�

∑
σ∈Sn

xn−1
σ (1)x

n−2
σ (2) · · · x1

σ (n−1)x
0
σ (n)

1 − txσ(1)xσ (2)

(10)

which we will write as

F = g

f
(11)

with

f =
∏
i<j

(1 − txixj ) (12)

g = 1

�

∑
σ∈Sn

sgn(σ )xn−1
σ (1)x

n−2
σ (2) · · · xσ(n−1)

f

1 − txσ(1)xσ (2)

. (13)

f and g are polynomials in t of respective degrees N = 1
2n(n − 1) and N − 1. It is obvious

that the coefficients of f are homogeneous symmetric polynomials in xi over the integers. As
F is a series of polynomials of the same kind, the statement turns out to be also true for g. Our
next task is to compute f and g in closed form; we would like, in particular, to express their
coefficients in the most natural basis for homogeneous symmetric polynomials in the present
context: the irreducible characters of SU(n), or Schur polynomials.

In fact, the result for f is known: it was obtained by Weyl in the course of his computation
of the characters of the symplectic groups. The Weyl result is [14]

f = 1

�
|xn−1, xn−2 + xn, xn−3 + xn+1, . . . , 1 + x2n−2|

∣∣∣∣
x−→√

tx

(14)

where the notation |x−→√
tx indicates that, after computing the determinants, each xj has to be

substituted by
√

txj . Given this expression, we can obtain the coefficients in t in

f = 1 − Z1t + Z2t
2 − Z3t

3 + · · · + (−1)NZN tN (15)

by expanding the determinant in the numerator of (14) in such a way that all terms have
monomial columns and collecting terms of the same order in t. This gives Zd as a sum of
determinantal quotients of the form

zλ = 1

�

∣∣xn+λr , xn+λr−1 , . . . , xn+λ1, xn−1, . . . , xn−(̂λ1−2), . . . , xn−(̂λr−2), . . . , 1
∣∣∣∣∣∣

x−→√
tx

(16)

where λ = λ1, λ2, . . . , λr, the hat over a term means that the term is absent and the sum is
extended to all possible combinations such that

n − 2 � λr > λr−1 >, . . . ,> λ1 � 0 λ1 + · · · + λr = d − r. (17)

From (16), the Weyl character formula gives zλ = χk1,k2,...,kn
with

kj =


j + λr−j+1 1 � j � r

r r + 1 � j � r + λ1 + 1
r − k r + λk + 3 − k � j � r + λk+1 + 1 − k k = 1, 2, . . . , r − 1
0 j � λr + 3.

(18)
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A closer inspection shows that this structure corresponds to a Young diagram of rank r with
j +λr−j+1 boxes in the j th row and in which the number of rows with number of boxes greater
or equal to j is 1 + j + λr−j+1, j = 1, 2, . . . , r . Therefore, the Young diagram associated with
χk1,k2,...,kn

is (λr , λr−1, . . . , λ1|λr + 1, λr−1 + 1, . . . , λ1 + 1) in Frobenius notation, see [7], and,
by identifying each diagram with its associated SU(n) character, we can write

Zd =
∑
Pd

(β1 − 1, β2 − 1, . . . , βr − 1|β1, β2, . . . , βr ) (19)

where Pd is the set of partitions of d such that β1 > β2 > · · · > βr � 1.
On the other hand, we can show that g is given by a determinantal expression very similar

to (14):

g = 1

�

∣∣xn−1, xn−2, xn−3, xn−4 + xn, xn−5 + xn+1, . . . , 1 + x2n−4
∣∣∣∣∣∣

x−→√
tx

. (20)

To see this, it is convenient to rescale temporarily t to the unity, to write g = Q1

�
and to consider

first the case x1 = x−1
2 . From (13) we get

Q1|x1=x−1
2

= [(
xn−1

1 xn−2
2 xn−3

3 · · · xn−1 + perm
) − (

xn−1
2 xn−2

1 xn−3
3 · · · xn−1 + perm

)]
×

[(1 − x1x3) · · · (1 − x1xn)]
[(

1 − x−1
1 x3

) · · · (1 − x−1
1 xn

)] n∏
j,k=3

(1 − xjxk)


= (x1 − x2)

[
xn−3

3 xn−4
4 · · · xn−1 + perm

][(1 − x1x3) · · · (1 − x1xn)]

× [(
1 − x−1

1 x3
) · · · (1 − x−1

1 xn

)] n∏
j,k=3

(1 − xjxk)

 (21)

where ‘perm’ refers to the permutations of the powers of x3, x4, . . . , xn−1 including signature.
By taking xn−2

k as a common factor in the k row of the numerator of (20) for k = 1 to n, we
write

Q2 = |xn−1, xn−2, xn−3, xn−4 + xn, xn−5 + xn+1, . . . , 1 + x2n−4|
= (x1x2 · · · xn)

n−2|x, 1, y, y2, . . . , yn−2| (22)

with yj = xj + x−1
j . If we take x1 = x−1

2 in this expression and subtract in the determinant
the second from the first row, we obtain through the Vandermonde formula (7)

Q2|x1=x−1
2

= (−1)
(n−1)(n−2)

2 (x1 − x2)(x3x4 · · · xn)
n−2(y2 − y3) · · · (y2 − yn)

n∏
i,j=3
i<j

(yi − yj ). (23)

The use of the identities(
1 − x−1

2 xj

)
(1 − x2xj ) = −xj (y2 − yj )

(24)
yk − yj = −(xkxj )

−1(xk − xj )(1 − xkxj )

in (23) transforms the right side of this equation in exactly the last member of (21); therefore
Q1|x1=x−1

2
= Q2|x1=x−1

2
. As Q1

�
and Q2

�
are symmetric polynomials, this implies that

Q1

�
− Q2

�
= fP where P is a symmetric polynomial, but from (12) and the definitions of

Q1 and Q2, one can easily check that the total degree of the left side of this equation is
necessarily lower than the total degree of f , so that P = 0. This concludes the proof of (20).
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If we now write

g =
N−1∑
k=0

Gkt
k (25)

a computation completely analogous to that leading from (14) to (19) allows us to write Gk as
follows:

Gk =
∑
Qk+j,j

(−1)k+j (β1 − 3, β2 − 3, . . . , βj − 3|β1, β2, . . . , βj ) (26)

where Qk+j,j is the set of partitions of k + j with j terms and satisfying β1 > β2 > · · · βj � 3.
From (14) and (20), we give the final formula for the desired generating function:

F = |xn−1, xn−2, xn−3, xn−4 + xn, xn−5 + xn+1, . . . , 1 + x2n−4|
|xn−1, xn−2 + xn, xn−3 + xn+1, . . . , 1 + x2n−2|

∣∣∣∣
x−→√

tx

. (27)

3. Differential equations for f and g

We will deduce in this section two differential equations satisfied by f and g. These equations
can be taken as the basis for an alternative approach for the computation of these quantities.

In establishing the equations, we will take advantage of two differential operators of a
class introduced in [4, 5, 2]:

D1 =
n∑

p=1

zp−1
∂

∂zp

D2 = 1

2

 n∑
p=2

zp−2
∂

∂zp

+ D2
1

 .

The action of these operators on Schur polynomials can be most simply described in graphical
terms: D1 applied to the Schur polynomial Sλ gives the sum of all Schur polynomials whose
associated Young diagrams are that of Sλ with one box removed. D2 does similarly but, in this
case, the sum is over the Young diagrams obtained by removing two boxes not in the same
row in all possible ways.

From (12), we get

ln f = −
∑
i<j

(
xixj +

1

2
x2

i x
2
j +

1

3
x3

i x
3
j + · · ·

)
(28)

and, therefore

f = exp

{
−

∞∑
k=1

mk

k
tk

}
mk =

n∑
i<j

xk
i x

k
j (29)

or, alternatively

f = exp

{
−1

2

∞∑
k=1

p2
k − p2k

k
tk

}
pk =

n∑
i=1

xk
i . (30)

This gives ∂f

∂p1
= −p1tf . But p1 = z1 and ∂

∂p1
= D1 [2, 7], hence

D1f = −z1tf (31)

or, using (15)

D1Zj = z1Zj−1. (32)
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To find the differential equation for g, we use (30) to write(
1

2

∂2

∂p2
1

− ∂

∂p2

)
f =

[
1

2
t2

(
p2

1 + p2
) − t

]
f (33)

and, as z2 = 1
2

(
p2

1 − p2
)

and D2 = 1
2

∂2

∂p2
1
− ∂

∂p2
[2, 7], we conclude that

D2f = [
t2

(
z2

1 − z2
) − t

]
f. (34)

Now,

D2g = D2(fF ) = (D2f )F + f (D2F) + (D1f )(D1F). (35)

The first term is proportional to g. The second too: as the diagrams in F consist only of two
identical lines, we get

D2F = tF. (36)

The third term gives a contribution proportional to D1g, because

D1g = D1(fF ) = −tz1g + fD1F. (37)

The differential equation is therefore

D2g + tz1D1g + t2z2g = 0 (38)

or, alternatively

D2Gj + z1D1Gj−1 + z2Gj−2 = 0. (39)
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